Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 11(6): e1145, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37885335

RESUMO

Daprodustat is an oral small molecule hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor (PHI) approved in Japan and the United States for the treatment of anemia associated with chronic kidney disease. This phase 1, nonrandomized, 2-period, crossover study in 6 healthy men characterized and quantified the metabolites generated after a microtracer IV infusion of 50 µg (125 nCi) [14 C]-daprodustat administered concomitantly with a nonradiolabeled therapeutic dose of a 6-mg daprodustat tablet, followed by a single oral solution dose of 25 mg (62.5 µCi) [14 C]-daprodustat. High-performance liquid chromatography (HPLC) coupled with radioactivity detection (TopCount or AMS) and HPLC-tandem mass spectrometry (HPLC-MSn ) were used for quantitative measurement and structural identification of radioactive metabolites in plasma, urine, feces, and bile. Following oral administration of [14 C]-daprodustat, unchanged daprodustat was the principal circulating drug-related component, accounting for 40% of plasma radioactivity. Predominant oxidative metabolites M2, M3, M4, and M13 individually represented 6-8% of the plasma radioactivity and together accounted for the majority of radioactivity in urine and feces (53% in both matrices; 12% and 41% of dose, respectively). Unchanged daprodustat was not detected in urine and was only 0.7% of total radioactivity in feces (<0.5% of dose), with the remainder of the dose accounted for by oxidative metabolites. The radio-metabolic profile of duodenal bile following IV infusion of [14 C]-daprodustat was similar to that observed in feces after oral administration. The data suggested that oral daprodustat was extensively absorbed, cleared exclusively by oxidative metabolism, and eliminated via hepatobiliary (primary) and urinary (secondary) excretion.


Assuntos
Barbitúricos , Bile , Humanos , Masculino , Bile/metabolismo , Estudos Cross-Over , Hidrolases/metabolismo
2.
Xenobiotica ; 52(8): 928-942, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36227740

RESUMO

Understanding compound metabolism in early drug discovery aids medicinal chemistry in designing molecules with improved safety and ADME properties. While advancements in metabolite prediction brings increased confidence, structural decisions require experimental data. In vitro metabolism studies using liquid chromatography and high-resolution mass spectrometry (LC-MS) are generally resource intensive and performed on very few compounds, limiting the chemical space that can be examined.Here, we describe a novel metabolism strategy increasing compound throughput using residual in vitro clearance samples conducted at drug concentrations of 0.5 µM. Analysis by robust ultra high-performance liquid chromatography separation and accurate-mass MS detection ensures major metabolites are identified from a single injection. In silico prediction (parent cLogD) tailors chromatographic conditions, with data-dependent tandem mass spectroscopy targeting predicted metabolites. Software-assisted data mining, structure elucidation and automatic reporting are used.Confidence in the globally aligned workflow is demonstrated with 16 marketed drugs. The approach is now implemented routinely across our laboratories. To date, the success rate for identification of at least one major metabolite is 85%. The utility of these data has been demonstrated across multiple projects, allowing earlier medicinal chemistry decisions to increase efficiency and impact of the design-make-test cycle thus improving the translatability of early in vitro metabolism data.


Assuntos
Software , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Biotransformação
3.
Drug Metab Dispos ; 50(11): 1442-1453, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36153007

RESUMO

GSK3640254 is a next-generation maturation inhibitor in development for HIV-1 treatment, with pharmacokinetics (PK) supporting once-daily oral dosing in human. This open-label, nonrandomized, two-period clinical mass balance and excretion study was used to investigate the excretion balance, PK, and metabolism of GSK3640254. Five healthy men received a single intravenous microtracer of 100 µg [14C]GSK3640254 with a concomitant oral nonradiolabeled 200-mg tablet followed by an oral 85-mg dose of [14C]GSK3640254 14 days later. Complementary methods, including intravenous microtracing and accelerator mass spectrometry, allowed characterization of several parameters, including fraction absorbed, fraction escaping gut metabolism, hepatic extraction ratio, and renal clearance. Intravenous PK of GSK3640254 was characterized by low plasma clearance (1.04 l/h), moderate terminal phase half-life (21.7 hours), and low volume of distribution at steady state (28.7 L). Orally dosed GSK3640254 was absorbed (fraction absorbed, 0.26), with a high fraction escaping gut metabolism (0.898) and a low hepatic extraction ratio (0.00544), all consistent with low in vitro intrinsic clearance in liver microsomes and hepatocytes. No major metabolites in human plasma required further qualification in animal studies. Both unchanged parent GSK3640254 and its oxidative and conjugative metabolites were excreted into bile, with GSK3640254 likely subject to further metabolism through enterohepatic recirculation. Renal elimination of GSK3640254 as the parent drug or its metabolites was negligible, with >94% of total recovery of oral dose and >99% of the recovered radioactivity in feces. Altogether, the data suggest that systemically available GSK3640254 was slowly eliminated almost entirely by hepatobiliary secretion, primarily as conjugative and oxidative metabolites. SIGNIFICANCE STATEMENT: The combination of an intravenous 14C microtracer with duodenal bile sampling using EnteroTracker in a human absorption, distribution, metabolism, and excretion study enabled derivation of absorption and first-pass parameters, including fraction absorbed, proportion escaping first-pass extraction through the gut wall and liver, hepatic extraction, and other conventional clinical pharmacokinetic parameters. This approach identified hepatic metabolism and biliary excretion as a major elimination pathway for absorbed drug, which would be overlooked based solely on analyses of plasma, urine, and fecal matrices.


Assuntos
HIV-1 , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Fezes/química , Humanos , Masculino , Taxa de Depuração Metabólica
4.
Drug Metab Dispos ; 49(12): 1109-1117, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625435

RESUMO

Linerixibat, an oral small-molecule ileal bile acid transporter inhibitor under development for cholestatic pruritus in primary biliary cholangitis, was designed for minimal absorption from the intestine (site of pharmacological action). This study characterized the pharmacokinetics, absorption, metabolism, and excretion of [14C]-linerixibat in humans after an intravenous microtracer concomitant with unlabeled oral tablets and [14C]-linerixibat oral solution. Linerixibat exhibited absorption-limited flip-flop kinetics: longer oral versus intravenous half-life (6-7 hours vs. 0.8 hours). The short intravenous half-life was consistent with high systemic clearance (61.9 l/h) and low volume of distribution (16.3 l). In vitro studies predicted rapid hepatic clearance via cytochrome P450 3A4 metabolism, which predicted human hepatic clearance within 1.5-fold. However, linerixibat was minimally metabolized in humans after intravenous administration: ∼80% elimination via biliary/fecal excretion (>90%-97% as unchanged parent) and ∼20% renal elimination by glomerular filtration (>97% as unchanged parent). Absolute oral bioavailability of linerixibat was exceedingly low (0.05%), primarily because of a very low fraction absorbed (0.167%; fraction escaping first-pass gut metabolism (fg) ∼100%), with high hepatic extraction ratio (77.0%) acting as a secondary barrier to systemic exposure. Oral linerixibat was almost entirely excreted (>99% recovered radioactivity) in feces as unchanged and unabsorbed linerixibat. Consistent with the low oral fraction absorbed and ∼20% renal recovery of intravenous [14C]-linerixibat, urinary elimination of orally administered radioactivity was negligible (<0.04% of dose). Linerixibat unequivocally exhibited minimal gastrointestinal absorption and oral systemic exposure. Linerixibat represents a unique example of high CYP3A4 clearance in vitro but nearly complete excretion as unchanged parent drug via the biliary/fecal route. SIGNIFICANCE STATEMENT: This study conclusively established minimal absorption and systemic exposure to orally administered linerixibat in humans. The small amount of linerixibat absorbed was eliminated efficiently as unchanged parent drug via the biliary/fecal route. The hepatic clearance mechanism was mispredicted to be mediated via cytochrome P450 3A4 metabolism in vitro rather than biliary excretion of unchanged linerixibat in vivo.


Assuntos
Administração Intravenosa , Administração Oral , Proteínas de Transporte/antagonistas & inibidores , Eliminação Hepatobiliar , Glicoproteínas de Membrana/antagonistas & inibidores , Metilaminas/farmacocinética , Eliminação Renal , Tiazepinas/farmacocinética , Adulto , Disponibilidade Biológica , Fármacos Gastrointestinais/farmacocinética , Voluntários Saudáveis , Eliminação Hepatobiliar/efeitos dos fármacos , Eliminação Hepatobiliar/fisiologia , Humanos , Absorção Intestinal , Masculino , Taxa de Depuração Metabólica , Eliminação Renal/efeitos dos fármacos , Eliminação Renal/fisiologia , Resultado do Tratamento
5.
Xenobiotica ; 46(8): 683-702, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26586303

RESUMO

1. GSK2140944 is a novel bacterial topoisomerase inhibitor in development for the treatment of bacterial infections. The metabolism and disposition in healthy human subjects was investigated. 2. Six male subjects received [(14)C] GSK2140944 orally (2000 mg) and as a single 2-hour i.v. infusion (1000 mg). Urinary elimination (59%) was major by the i.v. route, whereas fecal elimination (53%) pre-dominated via the oral route. Accelerator mass spectrometry (AMS) was used for the analysis of plasma and bile samples due to the low level of radioactivity in samples (low specific activity of the doses). Unchanged GSK2140944 was the predominant circulating component (>60% DRM), with the main circulating metabolite M4 formed by oxidation of the triazaacenaphthylene moiety representing 10.8% (considered major) and 8.6% drug-related material by the oral and i.v. route, respectively. Approximately 50% of the oral dose was absorbed and eliminated mainly as unchanged GSK2140944 in urine (∼20% of dose). Elimination via metabolism (∼13% of dose) was relatively minor. The facile oxidation of GSK2140944 to metabolite M4 was believed to be a result of activation by adjacent electron withdrawing groups. 3. This study demonstrates the use of AMS to overcome radioprofiling challenges presented by low specific activity resulted from high doses administration.


Assuntos
Acenaftenos/metabolismo , Antibacterianos/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Inibidores da Topoisomerase/metabolismo , Acenaftenos/urina , Adulto , Antibacterianos/urina , Voluntários Saudáveis , Compostos Heterocíclicos com 3 Anéis/urina , Humanos , Masculino , Distribuição Tecidual , Inibidores da Topoisomerase/urina
6.
Xenobiotica ; 44(4): 352-68, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23971497

RESUMO

1. This study assessed the mass balance, metabolism and disposition of [(14)C]trametinib, a first-in-class mitogen-activated extracellular signal-related kinase (MEK) inhibitor, as an open-label, single solution dose (2 mg, 2.9 MBq [79 µCi]) in two male subjects with advanced cancer. 2. Trametinib absorption was rapid. Excretion was primarily via feces (∼81% of excreted dose); minor route was urinary (∼19% of excreted dose). The primary metabolic elimination route was deacetylation alone or in combination with hydroxylation. Circulating drug-related component profiles (composed of parent with metabolites) were similar to those found in elimination together with N-glucuronide of deacetylation product. Metabolite analysis was only possible from <50% of administered dose; therefore, percent of excreted dose (defined as fraction of percent of administered dose recovery over total dose recovered in excreta) was used to assess the relative importance of excretion and metabolite routes. The long elimination half-life (∼10 days) favoring sustained targeted activity was important in permitting trametinib to be the first MEK inhibitor with clinical activity in late stage clinical studies. 3. This study exemplifies the challenges and adaptability needed to understand the metabolism and disposition of an anticancer agent, like trametinib, with both low exposure and a long elimination half-life.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Absorção , Administração Oral , Idoso , Animais , Relação Dose-Resposta a Droga , Humanos , Masculino , Pessoa de Meia-Idade , Piridonas/química , Pirimidinonas/química , Radiometria , Compostos Radiofarmacêuticos/química , Ratos
7.
Bioanalysis ; 5(4): 463-79, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23414379

RESUMO

Effective characterization of drug metabolites in complex biological matrices is facilitated by mass spectrometers with high resolving power, mass accuracy and sensitivity. This review begins with an overview of high-resolution MS terminology and the different types of instrumentation that are currently available. Metabolite structure analysis offers unique challenges and, therefore, the different types of approaches used to solve problems are highlighted through specific examples. Overall, this review describes the value that high-resolution MS brings to drug-metabolism studies.


Assuntos
Espectrometria de Massas/métodos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Animais , Humanos , Espectrometria de Massas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...